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ABSTRACT

e present a new method for resolving the scheme-scale ambiguity that
has plagued perturbative analyses in quantum chromodynamics (QCD) and
other gauge theories. For Abelian theories the method reduces to the
standard criterion that only vacuum polarization insertions contribute
to the eftective coupling constant. Given a scheme, our procedure
automatically determines the coupling-constant scale appropriate to a
particular process. This leads to a new criterion for the convergence
of perturbative expansions in QCB. We examine a number of well knoun
reactions in QCD, and find that perturbation theory converges uwell for
al] proacesses other than the gluonic width of the ¥. Our analysis calls
into question recent determinations of the QED coupling constant based

upon T decay.



1. INTRODUCTION
A major ambiguity in the interpretation of perturbative expansions in
quantum chromodynamics {QCD) is in the choice of an expansion parameter.

In general QCDP predictions for scme measurable quantity p have the form
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Tﬁe coefficients C;{(Q) depend upon both the exact detinition of the
running coupling constant ag(Q) (i.e., the “scheme’), and upon the
cheice of scale Q. When working to all orders in ag(Q} the choice of
scheme and scale is irrelevant; the coefficients C;(Q) are defined so
that p is the same for all choices. Houever, this freedom can be a
serious source of confusion in finite order analyses. Indeed smhen
working to first order, one can set C;{(Q) to any value simpily by
redefining ag or by changing Q. This coefficient seems meaningless
heré. In particular it seems to give no indication of the convergence
of the expansion. This question is of critical importance in testing
QCk since a5 is rather large (~.1-.3) at current energies. It is quite
Jikely that perturbation theory will fail completely for sSome processes.
Such processes must be identified. N

- The potential difficult;es are well illustrated in loxk energy quantum
electrodynamics (QED), uhere for example the electron anomaly has a very

convergent expansion,
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uhile the expansion for orthopositronium decay is muych less convergent:
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The difference in convergence rate here is not an artifact due to a bad
choice of scheme or scale; the first order coefficients in these
expansions should not be absorbed into a redefinition of ¢ since the
running coupling constant tor QED doesn’t run at these energies (i.e..
below the e*e~ threshold).

While numerous schemes have been studied (MS,' #5,2 MOM,2 ---),
little has been done to resolve the scale ambiguity. In this paper ue
introduce an automatic procedure for determining the coupling-constaqt
scale appropriate to a particuiar process." Given a scheme, this results
ih a neu criterion for the convergence of perturbative expansions in QCD
by unambiguously fixing the expansion coefficient C4(Q) in E£q. (1) for a
given process; perturbation theory cannot be trusted when €4(Q)
asi{Qdsw 2 1. Furthermore, the coupling-constant scale can be determined
without computing all higher order corrections. Thus leading order

nalyses i e m ingfull om ith ex iments.

In Section 2, we outline our basic approach as applied to QED (i.e.,
Abelian theories). MWe define the running coupling constant a(Q) for QED
te include all contributions due to vacuum polarization insertions in
the photon propagator. This is the only natural choice since the
variation of the eftective coupling in QED is due to vacuum polarization
alone. The coupling-constant scale Q¥* best suited to a particular
process in a given order can be determined simply by computing the
vacuum-polarization insertions in the diagrams of that order,
Expansion (1) is then replaced by

alQ4®) a(Q;¥*) ]
—————— e

p = Coal(Qe¥) [1 + Cq¥ —— + (%

o 7 (4



where all photon self-energy corrections are absorbed into the effective
coupling constants by an appropriate (and unique) choice of scale§ Qo ¥,
d1%, ---, Since all dependence upon the number of light-fermion flavors
{n¢) usually enterg through the photon self-energy in low orders, both
the coupling-constant scales Q;* and the low order coefficiénts t;i* are
independent af n¢. (Light-by-light scatiering graphs lead to ng
dependence in higher orders.) The light-fermion loop corrections serve
ﬁainly to renormalize «{({q), as expected. Hote also, that in a generai
process, the scales Qo*, Q1% can depend on the ratio of invariants,
e.9., center-of-mass angles.

In QeY (i.e., non-Abelian theories), it again is natural to absorb
all vacuum polarization corrections into ag(Q). In particular, all
vacuum polarization due to 1ight fermions should be absorbed., leaving an

expansion

ag(Q*)
p = CoaglQ®) [1 + Cqy® + ---]
. L

(5)
where C4¥ and Q* are defined to be n¢ independent. (The calculation of
C:¥* gnd Q% is unambiguous since the dependence of a, on ny is determined
to this order by Bp = 11 = 273 n¢.) Although the scale Q¥ is now
automatically fixed, the expansion (5) still depends upon the definition
of ug(qQ) ~ i.e., upon the.renornalization ‘scheme’.% One can easily
create schemes in which Cq%* is arbitrarily large., and, unlike QED., QCD
has no scheme which is obviously superior. This scheme ambiguity can in
fact be eliminated to a Yarge extent by adopting some physical process

as a theoretical standard for defining ag(Q).% For example, the ratio

of e*e” = p*uw” might be defined to be exactly (s = gf)



Ra'a" (Qz) =3 z qu [‘ +
flavors

(8)
Expangions for other procedures would then be expressed in terms of
apl{Q*), with scale Q% chosen such that C;®* and Q@* are independent of n¥
as in £q. (5). As it happens, expressions derived in this R-scheme are
almost identical to those obtained for the MS or ﬁs schemes (MS and MS
give the same expansions upen used mith our procedure). We will adopt
the NS scheme as our standard in this paper, since it is the more
familiar.

There are a large number of physical processes uhich could be used as
the standard for defining «4 Mith similar qualitative results. A bad
choice for the standard process can be detected immediately upon
application. This is because the differences between first order
coefficients Cy¥* for various processes are independent of the scheme;
therefore, tor a bad choice of standard process most coefficients C®
Mill be iarge and have the same sign. This, in fact, does not seem to
be the case for the R -~ MS - M5 scheme, since for a large number of
processes the coefficients Cy% obtained by using the automatic scale
fixing procedure are indeed small.

The plan of this paper is as follous. [In the next section we review
the procedure in which the scale of the running coupling coupling
constant is set in Abelian gauge theory. These ideas are then developed
for QCD in Section 3. Me limit our discussion to lowest and first-order
corrections, and focus upon processes that do not involve a gluon-gluon
coupling in leading order. Thig ig sufficient for most

phenomenologically relevant processes in QCD, and de illustrate our



procedure for a number of well knoun reactions. Most significantly, ue
find that the gluonic width of the T has a very unreliable perturbative
expansion. MWe also find that first order corrections are numerically
smail (£10-20 percent) for all of the other processes considered, uwhen
the correct coupling-constant scale Q* is emplaoyved; the louwest order
calculations, together with the quark vacuum polarization corrections
which set Q¥%, are quite adequate in these cases for a quantitative
camparison of theory and experiment.

Finally, we summarize our regults in Section 4, contrasting our
approach with other attempts at resolving the "scheme-scale ambiguity."™
We also briefly explore the possibility of generalizing our method so

that it may be applied to al] processes in QcCD.

2. QED (ABELIAN GAUGE THEORIES?

The only true ultraviolet divergences in QED are associated with
vaéuum polarization, because divergences in the vertex and fermion self-
energy corrections cancel by the dard identity (or are absent in iLandau
gauge). Thus it is only vacuum polarization corrections that
renormalize the coupling. $Since these corrections vanish like Q2/mg? as
Q2 - 0, QED becomes a fixed point theory at very low energies?:

alg) » a = 1/137.036 .- as Q + 0 . : {7
Equation (7) serves as an initial condition for the renormalization
group equations, which then uniquely determine «(Q) for all Q. In
effect, me are shsorbing the entire vacuum polarization correction into

a(Q) - i.e., Q% = -q%)



-guv + quqv,qz
alQ) = g lA) d¥*¥(q.A)
qz + i€ (3)

where ago(A) is the bare coupling and d“¥ the unrenormalized photon
propagator.

Siven this definition, we need only determine the appropriate scale
(or scales) Q for a given process. The most naive procedure is simply
to use the full propagator (Eq. (3)) for each photon in any given
diagram.® For example, ue can replace o by (@) for (with g2 = -q?)
before integrating over q in the leading diagram for the muon anomaly
{(Fig. 1a).? A1l vacuum polarization insertions are automatically
included. Unfortunately, the loop integration is thean quite cumbersome.
However, by the mean value theorem there must be some scale Q¥ ~ my for
which the exact result is

a(Q¥)
VP =

ap .
2u (9a)

shere from the definition, Eq. (B)

Q
a [2 Q 5 al2 |1 Q 25
1--1-2—-=] - I- - & — + F(3) - —| - .-
z L3 e 3, )} 2 By 24 (9b)

(For simplicity ue are neglecting muon loops and terms of order mgs/qQ or

«(q) =

less in ald).) The scale Q¥ can then be determined order by order in
perturbation theory by expanding (9) in pouers of ¢ and adjusting the
coefficients to agree with results obtained order by order fraom vacuuam
polarization insertions in the basic diagram. For example, the Jomest

order electron loop (Fig. 1b) contributes

a 2 my  25) w
Avp — ap? = [- &n — - —| - a,,°
w 3 me 18) w



which from Eq. {%a) must equal
2 Q* 5] a
-4an — - = — a,°
3 ma 3 =
Thus we have G* = mpe3/'2 in leading order. HWith this procedure, the
muon anomaly has the same expansion to first order as the electron
anomaly {Eq. (2)) but with a different expansion parameter — i.e., to

this order we are replacing

« @
— |1 + = (Ayp + C4) + ---
2n

anp =
]
by
e (Q¥*) o (%)
ay = 1 + Cyqy + -~
2n n (19a)
where
a
alQ¥*) =
o
1 - = Ayp .
T (10b)
and
197  w? 3
Cy = — + — - 7282 + = ¥(3) & -0.657 .
72 6 2

Intuitively this is reasonable since if a single insertion gives

asT Ayp, a double insertion will give roughly (asw Ayp}2, and so on.
Thus the electrons modify only the charge and not the physical expansion
of ay in this order. O0f course this is no longer the case in higher
orders, when *light-by-1light”’ diagrams (Fig. 1c¢) and others like them

appear.



The physical scale Q% is refined by higher order corrections —
Q* = mue57'2 (1 + 1.14 asg + --+) — but its expansion is obviously far
more convergent than the original expansion for ay. Also this expansion
is unique. For example, including the Cy a/® in «{Q*) (Eq. {10b)) wuould
wreak havoc with the next-to-leading logarithms of my/me in higher
orders; there is no reason to expect that the Cy asw is part of an
approximately geomeiric series of contributions, while the vacuum
polarization corrections must be geometric (for renormalizability).
Finaily, each order in perturbation theory will usually have its oun
scale (determined as above); there is no reason for all running

couplings to have the same scale.

3. QCD (NOM-ABELIAN GAUGE THEORIES)

A natural definition for the running coupling has proven far more
elusive in QCD than in QED. There is no boundary condition for ag(Q)
analogous to Eq. (7). A perverse definition — e.g., ap(Q) = afs(@) +
10¢ ap5(Q) — would lead to absurd results. To avoid or at least
minimize thi; possibility we can define ay(Q) directly in terms of a
specific physical process, as in Eq. (6). This is equivalent to
prescribing a renormalization scheme. Here, homever, ue will simply
adopt the M3 scheme, since it happens to be practically equivalent to
choosing Reg*o- to define «g.

our procedure for fixing the scale is then straightforuard, at least
for processes which do not have gluon-gluon interactions in louest

order. To first order, such a process has an expansion



ans(q)

p = Co apsiq) [l + (Aypng + B)]

w
where the ng term is all due to quark vacuum poiarization. As in QEO0,
the sole function of these light-quark insertions is to renormalize the
coupling. Given a reasonable scheme, all such terms should he

completely absorbed into the leading order coupling by redefining the

scale:
Beo Q¥ -1
arpsl{q) +» apsig®) = afs(q) [I + — apn3(q) An — + --'] .
in Q

Furthermore, the nen scaie Q% must be n¢-independent if it is to retain
any physical significance in relation to the momenta c¢irculfating in the

leading order diagrams. Thus we replace

aRs() [ 3 33
= Cqo “ﬁ'é(‘l) [1"' -~ — BogAyp + — Ayp + B +---]

P—
7 2 2
by
ars(Q¥)
p = Lo apsiQ™®) [1 + Cq¥ + ...]
v (11a)
shere
g* = § exp{(3 Aypi
C4% = 33/2 Ayp + B . (11b)

The term 33 Ayps2 in Cy¥* serves to remove that part of the constant 8
which renormalizes the leadinhg order coupling. The ratio of these
gluonic carrections to the light-quark corrections is fixed by By =
11 -~ 273 ns.

Several features of this procedure are worth noting:

- 11 -



Tuo schemes that differ only by an ng-independent rescaling give
identical expansions in ag(@¥). Thus the differences betuween MS
and MS, for example, are irrelevant in this approach. Furthermore,
ap(Q) could be replaced by ap(Q/2) or ar(10%9Q) in definition (6)
with no effect on the final results for any process p expressed in
terms o} apl(Q¥*).

1f the M5 scheme is replaced by another for which

]

L H
ag(q) ans(q) [1 + —— (D By + E) + ---]

aHs
afs(Q e"20) [l + — E + ---]
v

(12
where B and £ are ng~independent, then the first order coefficients
for all processes are shifted by ~E: C) % =+ C4% -~ E. Differences
between first order coefficients are scheme independent. Thus, for
a poorly chosen scheme, the coefficients for most processes will be
large and have the same sign. On the other hand, if several
processes have convergenf expansions (i.e., C4¥* small) in some
scheme, then this will still be true in the physical scheme defined
in terms of any one of these processes (see Eq. (6}).

The leading order scale is determined solely by Ayp, Mhich comes
from quark vacuum-polarization insertions. This is usually all
that need be computed to make a meaningful leading order
prediction, as ue show below.

Equation (11a) is & particularly convenient way to present
perturbative results since all flavor dependence is implicit in the

definition of ajs.

_12_



The automatic scale-fixing procedure determines a natural expansion
parameter afs(Q¥) for the majority of interesting processes in QCD.
However, reactions with gluon-gluon couplings in leading order are more
difficult to analyze because quark loops appear in the first-order
radiative corrections to the gluon-gluon vertex as uwell as in propagater
insertions. It seems difficult if not impossible to separate the
divergent part of the vertex, which renormalizes a,, from the finite
process—dependent part in any unique and general fashion. Consequently.
our procedure for determining Q* is inapplicable; not all of the
n¢-dependence shouid be absorbed into a4(Q%). Since any process
involves gluon—-gluon vertices in first order and beyond, we presently
can determine Q¥ only to louwest order in ay/w.

To illustrate our scale-fixing procedure and to explore its
implications, We examine briefly a number of well known predictions of
Qch:

‘e - — The ratio of the totai cross section into hadrons to

the cross section for e*te- = pu*u- is (s = @3)'°

afs(®)  afs?
Re*e-(Q2) = 3 E eqt [l + + (1.98 - 0.115 ny¢) + --']
q ¥ wl
{13a)
apslQ*) afsila®)
+ 33 eq? [1 + + 0.98 + ---}
q w £ (13b)

where from Eq. (11), Q* = 0.71d. MNotice that eg(Q) (Eq. (6)) differs
from af5(Q*) by only 0.08 afs5/w, so that effectively ag{(Q) and

afs(.71 Q) are interchangeable (for any value of ng).

- 13 -



Deep Inelastic Scattering — The

moments of the non-singlet structure

function F2(x.,Q%) obey the evolution equation!!

d rl'l[ Q)
Qz -_— An "n(qz) = -
dq? &z
7nl0)

8w

where, for example,

Qz* 0.48 Q Cz

Qio¥ = 0.21 Q Cio
for n very targe, the effective
exactly what was found in Ref.

of deep inelastic scattering.

aRS 2BoBn + 7a'')
ais(Q) {1 + — + .-
. 4n r 9
(14a)
ﬁﬁ§‘ﬁn*)

s (Qn*) [l = e L + ]
L (14b)

= 0.27
= 1.1

scale here becomes Q.* ~ Q/yn which is

12 by a detailed study of the kinematics

N Decay ~ The ratio of the m width into hadrons to that into »7 is

tng = 3)13
I'(ne » hadrons) 2 ansiiiy,) 13 8
= 1+ {17213 - —n¢g| + ---
T'{gec =+ 1) 9e Y agep? L | S
(15a)
2 apsi(M®) aRs(M*)
- 1+ ———— 2,46 + -+~
e " agen? ] (15b)

Mhere M¥ = 0.26 My_.

I_nggag — The ratio of the hadronic to the leptonic uidths of the T is

{ng = 4%

- 14 -



1+ — (2.770(7)Bps - 14.0(5)) + ---

T(T =+ hadrons) 10(xZ - 9) aFs3(Mp) { efs ]
un

(T + p*u-) 81 ent aqep?
(16a)

10(w2 - 9) qHEI(MN) afs(ME)
14.0¢(5) + ---

81nep? agepl L

(16b)
where M* = 0.157 My. Thus the decay rate into gluons has a large
negative correction mith this physical definition of the coupling, just
as do the rates for T @ ¥y and for orthopositronium decay into three
phatons, beth of which are scheme and scale independent to this order.
Such a correction implies large, positive terms in higher orders, and in
fact these are necessary if we are to fit the data. Further study is
cleariy necessary before T decay can be used as a reliable measure of
ag. MHe do note, however, that the large corrections cancel almost
completely in the branching ratio for producing a direct photon plus

hadrons'5:

T¢(T -+ yp + hadrons? 36 ep? XQED afs(M*)
= 1+ 2.2(B) + ---

(I - hadrons) 5 afs(h®) T

an
where again M® = 0.157 My. This cancellation occurs because the leading
order amplitudes for T -+ ggg and T » ygg are identical in structure.
Thus the branching ratio for direct photons could be used to determine
ans.

lusive Proc es — Exclusive processes involving large transverse
momentum are given by the convolution of distribution amplitudes #(x.qQ).
representing the wavefunctions of each initial and final state hadron,

with (collinear irreducible) hard scattering amplitudes Th(x;,Q) in

which each hadron is replaced by collinear on-she!ll quarks (or

- 15 =



gluons).'® The procedure given above allows us trivially to include the
vacuum polarization corrections to the (skeleton} tree graphs
contributing to Tk, and thus set the coupling-constant scale for the
leading corder results. For example, the hard scattering amplitude

required for the form factor of helicity zeroc mesons is (Fig. 2)

. Y P
bax &ps e 27" yil-xJll-y) 4}
TH(X.V:Q) =
3q2 (1-x)(1-y) (18)

since the gluon’s momentum transfer is -(1-x)(1-y)@? (Fig. 3). 1f ue
estimate <x> ~ (y> ~ 172, then the correct expansion parémeter for Ty is
~ ais{Qs4.6) in agreement Wwith the detailed manalysis in Ref. 17,

b0 _potential — The interaction potential between two infinitely massive

quarks ig'®

Cr 4w aj5(Q) aps [ 5
V(g2) = - ———————— {1+ — |— B - 2| + .-

Q2 w 12 (19a)
Cr 4u afs(Q®) aRs(Q®)
- - 1 - 24+ .-
Q? L | (19b)

where Q% = 2°5/% Q £ 0.43 Q. This result shous that the effective scale
of the S scheme is about half of the true momentum transfer occuring in
the interaction potential. 1In parallel to QED. the effective potential
¥(Q2Z) gives a particularly intuitive scheme for defining the QCD
coupling constant

4% Cfr avy(Q)
v(Qz) = -

Q2 (20)

~ 16 -



with ay(Q) = apsle-576Q) {1 - 2a#5/% ---}. The perturbative QCD
prediction can be tested empirically — without scheme or scale
ambiguities — if the predictions for two processes such as (62 and (19)
are consistent with experiment.

annuiQ) — The standard MOM definition of as is (Landau gauge)?

oS
anom(R) = ans(@) {1 + — (1.28 Bo - 7.47) + .-

w (21a)

afs(Q®)
+ aps(@®) {1 - ——— 7.47 + ---

" (21b)
where Q% = 0.077 Q. Although this is not a physical process, we include
this result because MOM is a widely used scheme., Clearly the MOM scheme
is incompatable with our method of fixing Q%; all first order
coefficients would be increased by 7.47 if MOM replaced MS. This is not
unexpected since augn IS defineﬁ in terms of the tri~gluon interaction
and such processes are specifically excluded from our analysis. Indeed
the MOM schemé based upon the quark-gluon vertex is a perfectly
accepfable alternative to MS1Y:

apsia®)
afon(Q) = aps(a*) {1 - ———— 0.4 + ---

| (22)
where Q% = 0.43 Q and Landau gauge is assumed. It is only accidental
that exon(@) and afFoH(Q) are nearly identical for nf = 4. This is not

the case for ny # 4 {ng = 0 = auoni) = afgR(QICT + 2.4 afoR/R)) and

fram our perspective the MGM definition is preferable.

-17_



4. CONCLUSIONS

A striking feature of each of the perturbative QCD predictions, is
that — except for T decay — the tirst order cor;ection in «xs is only 10
to 20 percent of the leading term at typical Q¥ after the scale has been
fixed. (This is despite the fact that the coefficient Aypng + B is
replaced by 3372 Ayp + B, as in Eq. (11).) Perturb;tion theory seems to
work rather well — the leading term in afps(Q*) for these processes is by
jtself quite accurate. The main gffect of the higher order corrections
is in setting the correct scale Q¥%, and for this only the termionic
vacuum polarization corrections are needed. In effect the automatic
scale fixing procedure uses the fermionic loops to probe the momentum
flowing in the leading order disgrams. The remainder of the higher
order corrections, i.e., the (3372 Ayp + Blug/w, must of course be
computed to obtain predictions with precision better than 10 to 20
percent.

For T decay into three gluons (Eq. (16)), the higher order
corrections are quite large, calling into question the possibility of a
perturbative analysis of this reaction. The fact that the higher order
corrections for the corresponding decay of orthopositronium in QED are
large (see Eq., (3)) indicates that this effect is not due to ambiguities
in the renormalization scale,

The automatic scale-fixing procedure given in this paper is
applicable for any choice of renormalization scheme. However, once the
scale~fixing procedure is used, we can readily normalize and thus define
ag{Q) by using a convenient physical process such as Re*e-(Q?) (Eq. (6))

or the effective potential v(Q?) between heavy quarks (Eq. 19)). Since

- 18 -



the first order correcticns are small in RS scheme, any one of the
physical processes considered could have been used to define a4, with
essentially the same results. The exception is again T decay.
Rewriting the other expansions in terms of ay, defined such that

T(T = hadrons) i0(nZ - 9) ay3(My)

-
-

(Y » p*u-) 81 n ep? agep? 23)

is exact, results in first order corrections ranging from +3 ay/w to +7
ar/u, depending uﬁon the process. This seems not to be a very good
scheme. The standard MOM scheme appears to be even worse and so is
tncompatible with our technique.

In the past, tuwo viewpoints have prevailed concerning the resolution
of the scheme-scale ambiguity. One was simply to adopt some definition
of the coupling (MS, MS, MOM, ...) and then sttempt to guess the
appropriate scale for the process under study fe.g.., Q% = Mys3 for T
de;ay singe there are three gluon jets in leading order). Our procedure
removes any guessuyork by automaticaily determining the scale. It is an
essential complement to any apalysis of scheme dependence. Furthermore.
e now can easily introduce physical schemes for defining ag {(e.g.., Eq.
(6)) which are both gauge independent funlike MOM) and regulator
independent (unlike MS, M3).

The second vieupoint holds that for want of better guidance we should
adopt some ad hoc principile suﬁh as maximal convergence,2? where Q% is
chosen so that C;(@®) = 0 for i 2 1 in £q. (1), or minimal
sensitivity,?' where Q* is chosen to minimize the variation of p with Q%
{due to omission of higher order terms in Eq. (1)). Unlike our

procedure, these methods give no indication of the convergence of

_19_



perturbation theory; C4(Q%*) is by definition small and process
independent for both of the methods mentioned above. Such methods uill
usually be completely wrong when applied to processes, like T decay. for
which the higher order corrections are very large; worse, they give no
warning of such situations.

our scale-fixing procedure is obviously far from complete. The most
pressing problem is to find a suitable method for analyzing processes
with gluon-glucn couplings in lowest order. An interim procedurermight
be to absorb all fermion loop corrections — i.e., vacuum-polarization,
quark loops coupled to three gluons, etc. — into the coupling constant,
while using some definition of ag related to the tri-gluon interaction
(e.g., apon). However, something better should be found. UWhen it has
been, the extension of our analysis to higher orders will be

straightforsard (as is already true in QED).
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We are indebted to W. Celmaster and P. Stevenson for emphasizing
to us the importance of the scheme choice in our analysis. The
general problem of scheme dependence is discussed, for example,
in Refs. 1-3. For a recent discussion see A. Blumenfeld and M.
Mashe, Phys. Rev. D 26, 648 (1982), wmhere a comptete set of
references is found.

The idea of using a standard theoretical process for defining ag
is not new. For examplie, the possibility of using deep inelastic
lepton moments to define ag is discussed in A. Para and C. T.
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Figure Captions
Fig. 1 Diagrams conributing to the muon‘s anomalous magnetic
moment.
Fig. 2 The hard scattering amplitude in leading order for meson

torm factors.
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